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SUMMARY

In this paper, the dual integral formulation is derived for the modified Helmholtz equation in the propagation
of oblique incident wave passing a thin barrier (zero thickness) by employing the concept of fast multipole
method (FMM) to accelerate the construction of an influence matrix. By adopting the addition theorem,
the four kernels in the dual formulation are expanded into degenerate kernels that separate the field point
and the source point. The source point matrices decomposed in the four influence matrices are similar
to each other or only to some combinations. There are many zeros or the same influence coefficients in
the field point matrices decomposed in the four influence matrices, which can avoid calculating the same
terms repeatedly. The separable technique reduces the number of floating-point operations from O((N )2)
to O(N loga(N )), where N is the number of elements and a is a small constant independent of N . Finally,
the FMM is shown to reduce the CPU time and memory requirement, thus enabling us to apply boundary
element method (BEM) to solve water scattering problems efficiently. Two-moment FMM formulation
was found to be sufficient for convergence in the singular equation. The results are compared well with
those of conventional BEM and analytical solutions and show the accuracy and efficiency of the FMM.
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1. INTRODUCTION

The boundary element method (BEM), sometimes referred to as the boundary integral equation
method (BIEM), is now establishing a position as an actual alternative to the finite element method
(FEM) in many fields of engineering. It is necessary to discretize only the boundary instead of the
domain, which takes a lesser time for one-dimensional reduction in mesh generation. The dual BEM
(DBEM), or so-called the dual BIEM developed by Chen and Hong [1], is particularly suitable for
the problems with a degenerate boundary. The dual formulation also plays important roles in some
other problems, e.g. the corner problem [2], adaptive BEM [3], the spurious eigenvalue of interior
problem [4], the fictitious frequency of exterior problem [5] and the degenerate scale problem [6].
The thin water barrier considered in the present paper is a case of degenerate boundary [7, 8].

Prediction of wave interactions has been studied previously by a number of authors for many
kinds of configurations of a water barrier on the basis of linear wave diffraction theory [9–11].
Many analytical and numerical solutions have been developed on the basis of the eigenfunction
expansion method [12–16] and the BEM [17–21], respectively. The reflection and transmission
of oblique incident water wave past a submerged barrier with a finite width were studied using
the conventional BEM under the linear wave theory [18]. In these references, incident angle of
the wave, shape of the barrier, barrier height, width and slope under various wave conditions have
been considered. Nowadays, submerged breakwaters are often constructed to protect a harbor from
waves of the open sea. The primary function is to reduce the wave energy transmitted through it
and to have the advantages of allowing water circulation, fish passage and providing economical
protection. A suitable arrangement of a thin barrier may act as a good model for a breakwater. The
effect of such an arrangement on incident wave can be studied by using the dual BEM, assuming
linear theory for the thin breakwater.

There is considerable interest in many applications such as exterior acoustics, Stokes flows,
molecular dynamics and electromagnetic-wave problems, when the wave length is short or the
wave number is large after comparing with the size of the boundary. The complexity proportional
to the conventional BEM is N 2, but the FEM is N because of its banded coefficient matrix [22].
Multi-domain approach [23] or approximate theories such as the theories of plates and shells have
been employed to solve the problem using parallel computers. When the size of the influence matrix
by using BEM is so large, its storage and solution may cause problems for desktop computer.
Thus, the size of the influence matrix becomes the limiting factor that the problems can be solved
only with a particular computer. The BEM with iterative solvers has been employed to deal with
the problem [24]. The major computational cost of the iterative methods lies in the matrix–vector
multiplication. To improve the efficiency in numerical computation of the dual BEM, we will
adopt the fast multipole method (FMM) to accelerate the speed of calculation of the four influence
matrices.

The FMM was initially introduced by Rokhlin [25, 26] and extended to the Stokes flow field
[27]. Applications of FMM for the BEM analysis have been made by many researchers in various
fields of science and engineering [22, 27–37]. We will adopt the concept of the FMM to accelerate
the calculation of the influence matrix in the dual BEM. By adopting the addition theorem, the four
kernels in the dual formulation will be expanded into degenerate kernels where the field point and
the source point are separated. The separable technique can promote the efficiency in determining
the coefficients. The source point matrices decomposed in the four influence matrices are similar to
each other or only to some combinations. There are many zeros or the same influence coefficients
in the field point matrices decomposed in the four influence matrices. Therefore, we can avoid
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APPLICATIONS OF THE DUAL INTEGRAL FORMULATION 713

calculating the same terms repeatedly. The separable technique reduces the number of floating-
point operations from O((N )2) to O(N loga(N )), where a is a small constant. To accelerate the
convergence in constructing the influence matrix, the center of multipole is designed to locate on
the center of each boundary element. The singular and hypersingular integrals are transformed into
the summability of divergent series and regular integrals. Successful application to acoustic wave
was published [37].

In this paper, the problems of oblique incident wave passing a ‘thin’ water barrier will be
considered. Physically speaking, there is no zero thickness breakwater in the real world. However,
a finite thickness can be modelled as a zero thickness mathematically after comparing the wave
length with the thickness of the breakwater. Dual integral formulation in conjunction with FMM
will be used to solve the degenerate boundary problems of oblique incident wave passing a thin
barrier. Finally, the CPU time and memory requirement will be calculated using the FMM for
the scattering problem of water wave. The numerical results will be compared with those of
conventional DBEM and analytical solutions.

2. MATHEMATICAL FORMULATION

2.1. Modified Helmholtz equation in the scattering wave problem with a thin water barrier

Consider a vertical thin barrier parallel to the z-axis as shown in Figure 1. A wave train with a
frequency � propagates towards the barrier with an angle � in a constant water depth h. Assuming
inviscid, incompressible fluid and irrotational flow, the wave field may be represented by the
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Figure 1. Definition sketch of the water scattering problem of oblique incident
wave past a rigid thin barrier.
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velocity potential �(x, y, z, t), which satisfies the Laplace equation as

∇2�(x, y, z, t)=0 (1)

According to the uniformity of the water depth in the z-axis and the periodicity in time, the
potential �(x, y, z, t) of fluid motion can be expressed as

�(x, y, z, t)=�(x, y)ei(�z−�t) (2)

where �=k sin(�) and k is the wave number that satisfies the dispersion relation

�2=gk tanh(kh) (3)

in which g is the acceleration of gravity. The unknown function, �(x, y), describes the fluctuation
of the potential on the xy plane. Substitution of Equations (2) into (1) yields the modified Helmholtz
equation as follows:

∇2�(x, y)−�2�(x, y)=0, (x, y) in D (4)

where D is the domain of interest. The boundary conditions of the interested domain are summa-
rized as follows:

1. The linearized free water surface boundary condition:

��

�y
− �2�

g
=0 (5)

2. Seabed and breakwater boundary conditions:

��

�n
=0 (6)

where n is the boundary normal vector.
3. Radiation condition at infinity:

lim
x→∞ x1/2

(
��

�x
− ik�

)
=0, x at infinity (7)

4. The boundary conditions on the fictitious interfaces: For the infinite strip problem, the domain
can be divided into three regions after introducing two pseudo-boundaries on both sides of
the barrier, x=±l, as shown in Figure 1. The potential in region I without energy loss can
be expressed as

�(1)(x, y)=(ei�(x+l)+Re−i�(x+l))
cosh(k(h+ y))

cosh(kh)
(8)

where the superscript of � denotes the region number, R is the reflection coefficient and
�=k cos(�). The potential in region III without energy loss can be expressed by

�(3)(x, y)=T ei�(x−l) cosh(k(h+ y))

cosh(kh)
(9)

where T is the transmission coefficient.
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The boundary conditions on the fictitious interfaces are

�(1)(−l, y)=�(2)(−l, y) (10)

��(1)

�x

∣∣∣∣∣
x=−l

= ��(2)

�x

∣∣∣∣∣
x=−l

(11)

�(3)(l, y)=�(2)(l, y) (12)

��(3)

�x

∣∣∣∣∣
x=l

= ��(2)

�x

∣∣∣∣∣
x=l

(13)

According to Equations (8)–(10) and (12), we can derive the reflection and transmission coefficients
as follows:

R=−1+ k

n0 sinh(kh)

∫ 0

−h
�(2)(−l, y)cosh(k(h+ y))dy (14)

T = k

n0 sinh(kh)

∫ 0

−h
�(2)(l, y)cosh(k(h+ y))dy (15)

where n0= 1
2 (1+2kh/sinh(2kh)).

2.2. Dual boundary integral formulation

The first equation (UT formulation) of the dual boundary integral equations for the domain point
can be derived from Green’s third identity [18]:

2��(x̃)=
∫
B
T (s̃, x̃)�(s̃)dB(s̃)−

∫
B
U (s̃, x̃)

��(s̃)

�ns̃
dB(s̃), x̃ ∈D (16)

where x̃ is the field point (x̃=(x, y)), s̃ is the source point,

U (s̃, x̃)=−iD(1)
0 (k|s̃− x̃ |) (17)

in which D(1)
0 (k|s̃− x̃ |) is the first kind of zeroth-order modified Hankel function, and T (s̃, x̃) is

defined by

T (s̃, x̃)≡ �U (s̃, x̃)

�ns̃
(18)

in which ns̃ denotes the normal vector at the boundary point s̃, and U (s̃, x̃) is the fundamental
solution that satisfies

∇2U (x̃, s̃)−�2U (x̃, s̃)=�(x̃− s̃), x̃ ∈D (19)

In Equation (19), �(x̃− s̃) is the Dirac-delta function. After taking the normal derivative with
respect to Equation (16) for a thin barrier problem, the second equation (LM formulation) of the
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dual boundary integral equations for the domain point is derived as

2�
��(x̃)

�nx̃
=
∫
B
M(s̃, x̃)�(s̃)dB(s̃)−

∫
B
L(s̃, x̃)

��(s̃)

�ns̃
dB(s̃), x̃ ∈D (20)

where

L(s̃, x̃)≡ �U (s̃, x̃)

�nx̃
(21)

M(s̃, x̃)≡ �2U (s̃, x̃)

�nx̃�ns̃
(22)

in which nx̃ represents the normal vector of x̃ . The explicit forms for the four kernel functions are
shown in Table I. By moving the field point x̃ in Equations (16) and (20) to the smooth boundary,
the dual boundary integral equations for the boundary point can be obtained as follows:

��(x̃)=CPV
∫
B
T (s̃, x̃)�(s̃)dB(s̃)−RPV

∫
B
U (s̃, x̃)

��(s̃)

�ns̃
dB(s̃), x̃ ∈ B (23)

�
��(x̃)

�nx̃
=HPV

∫
B
M(s̃, x̃)�(s̃)dB(s̃)−CPV

∫
B
L(s̃, x̃)

��(s̃)

�ns̃
dB(s̃), x̃ ∈ B (24)

where RPV, CPV and HPV are the Riemann, Cauchy and Hadamard (Mangler) principal values,
respectively [38].

It must be noted that Equation (24) can be derived simply by applying a normal derivative oper-
ator with respect to Equation (23). Differentiation of the Cauchy principal value should be carried
out carefully by using Leibnitz’s rule. The commutative property provides us with two alternatives
for calculating the Hadamard principal value [1]. The four kernel functions,U (s̃, x̃),T (s̃, x̃), L(s̃, x̃)
and M(s̃, x̃), in the dual integral equations have different orders of singularity when x̃ approaches s̃.
The order of singularity and the symmetry properties for the four kernel functions and the contin-
uous properties of the potentials across the boundary resulting from the four kernel functions are
summarized in Table I. The linear algebraic equations discretized from the dual boundary integral
equations in Equations (23) and (24) can be expressed as

[T ]{�}=[U ]
{

��

�n

}
(25)

[M]{�}=[L]
{

��

�n

}
(26)

where {�} and {��/�n} are the boundary potential and flux.
After combining the dual equations on the degenerate boundary, when x̃ collocates on degenerate

boundaries C+ or C−, the singular system of the four influence matrices is desingularized. As
either one of the two equations, UT or LM, for the normal boundary S can be selected, two
alternative approaches, UT+LM and LM+UT , are proposed.
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The UT+LM method employs the following equation:

⎡
⎢⎢⎣

TiS jS TiS jC+ TiS jC−

TiC+ jS TiC+ jC+ TiC+ jC−

MiC+ jS MiC+ jC+ MiC+ jC−

⎤
⎥⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� jS

� jC+

� jC−

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎣

UiS jS UiS jC+ UiS jC−

UiC+ jS UiC+ jC+ UiC+ jC−

LiC+ jS LiC+ jC+ LiC+ jC−

⎤
⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

��

�n jS

��

�n jC+

��

�n jC−

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(27)

where iS and iC+ denote the collocation points on the S and C+ boundaries, respectively, and jS
and jC+ denote the element ID on the S and C+ boundaries, respectively. Also, LM+UT method
can solve the degenerate boundary problem by using

⎡
⎢⎢⎣

MiS jS MiS jC+ MiS jC−

TiC+ jS TiC+ jC+ TiC+ jC−

MiC+ jS MiC+ jC+ MiC+ jC−

⎤
⎥⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� jS

� jC+

� jC−

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎣

LiS jS LiS jC+ LiS jC−

UiC+ jS UiC+ jC+ UiC+ jC−

LiC+ jS LiC+ jC+ LiC+ jC−

⎤
⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

��

�n jS

��

�n jC+

��

�n jC−

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(28)

The main difference between Equations (27) and (28) is the constraint obtained by collocating the
points on the normal boundary (S), using the UT and LM equations, respectively.

2.3. Expanding the four kernels using the multipole expansion method

By adopting the addition theorem, the four kernels in the dual formulation are expanded into
degenerate kernels that separate the field point and the source point. The kernel function, U (s̃, x̃),
can be expanded into

U (s̃, x̃) =
∞∑

m=0
Cm(x̃)Rm(s̃)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ui =√−1
∞∑

m=0
εm(−1)m Im(k|x̃− p̃|)Fm(k|s̃− p̃|)cos(m
)

|s̃− p̃|>|x̃− p̃|

Ue=√−1
∞∑

m=0
εm(−1)mFm(k|x̃− p̃|)Im(k|s̃− p̃|)cos(m
)

|x̃− p̃|>|s̃− p̃|

(29)
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Figure 2. The definition sketch of the coordinate and coordinate transfor-
mation of collocation point: (a) global coordinate; (b) local coordinate; and

(c) coordinate transformation of collocation point.
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(c)

Figure 2. Continued.

where Cm(x̃) and Rm(x̃) are the field point function and the source point function of U kernel,
respectively, p̃ is the center of the multipole and

εm =
{
1, m=0

2, m 	=0

}
(30)


=cos−1
(

(s̃− p̃) ·(x̃− p̃)

|s̃− p̃||x̃− p̃|
)

(31)

and

Fm = Im+√−1(−1)mKm (32)

in which Im and Km are the mth-order modified Bessel functions of the first kind and second
kind, respectively. The definition sketch of the global coordinate is shown in Figure 2(a). The
contour plot of potential for the U kernel can be shown in Figures 3(a) and (b) for the real part and
imaginary part of the series form using the degenerate kernel in Equation (29), and Figures 3(c)
and (d) for the real part and imaginary part of the closed-form solution using Equation (17). The
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kernel function, T (s̃, x̃), can be expanded into

T (s̃, x̃) =
∞∑

m=0
Cm(x̃)[∇Rm(s̃) ·ns]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T i =√−1
∞∑

m=0
εm(−1)m Im(k|x̃− p̃|)

×
{

�Fm(k|s̃− p̃|)
�ns

cos(m
)+Fm(k|s̃− p̃|)�cos(m
)

�ns

}

|s̃− p̃|>|x̃− p̃|

T e=√−1
∞∑

m=0
εm(−1)mFm(k|x̃− p̃|)

×
{

�Im(k|s̃− p̃|)
�ns

cos(m
)+ Im(k|s̃− p̃|)�cos(m
)

�ns

}

|x̃− p̃|>|s̃− p̃|

(33)

where

�Im(k|s̃− p̃|)
�ns

= k

2
[Im−1(k|s̃− p̃|)+ Im+1(k|s̃− p̃|)] (si − pi )ni

|s̃− p̃| (34)

�Fm(k|s̃− p̃|)
�ns

= k

2
[Fm−1(k|s̃− p̃|)+Fm+1(k|s̃− p̃|)] (si − pi )ni

|s̃− p̃| (35)

�cos(m
)

�ns
=−m sin(m
)(aini ) (36)

in which ni is the i th component of the normal vector at s̃ and

a1= −1

sin(
)

(s2− p2)2(x1− p1)−(s1− p1)(s2− p2)(x2− p2)

|s̃− p̃|3|x̃− p̃| (37)

a2= −1

sin(
)

(s1− p1)2(x2− p2)−(s1− p1)(s2− p2)(x1− p1)

|s̃− p̃|3|x̃− p̃| (38)
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The kernel function, L(s̃, x̃), can be expanded into

L(s̃, x̃) =
∞∑

m=0
[∇Cm(x̃) ·nx ]Rm(s̃)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Li =√−1
∞∑

m=0
εm(−1)mFm(k|s̃− p̃|)

×
{

�Im(k|x̃− p̃|)
�nx

cos(m
)+ Im(k|x̃− p̃|)�cos(m
)

�nx

}

|s̃− p̃|>|x̃− p̃|

Le=√−1
∞∑

m=0
εm(−1)m Im(k|s̃− p̃|)

×
{

�Fm(k|x̃− p̃|)
�nx

cos(m
)+Fm(k|x̃− p̃|)�cos(m
)

�nx

}

|x̃− p̃|>|s̃− p̃|

(39)

where

�Im(k|x̃− p̃|)
�nx

= k

2
[Im−1(k|x̃− p̃|)+ Im+1(k|x̃− p̃|)] (xi − pi )n̄i

|x̃− p̃| (40)

�Fm(k|x̃− p̃|)
�nx

= k

2
[Fm−1(k|x̃− p̃|)+Fm+1(k|x̃− p̃|)] (xi − pi )n̄i

|x̃− p̃| (41)

�cos(m
)

�nx
=−m sin(m
)(bi n̄i ) (42)

in which n̄i is the i th component of the normal vector at x̃ and

b1= −1

sin(
)

(s1− p1)(x2− p2)2−(s2− p2)(x1− p1)(x2− p2)

|x̃− p̃|3|s̃− p̃| (43)

b2= −1

sin(
)

(s2− p2)(x1− p1)2−(s1− p1)(x1− p1)(x2− p2)

|x̃− p̃|3|s̃− p̃| (44)
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The kernel function, M(s̃, x̃), can be expanded into

M(s̃, x̃) =
∞∑

m=0
[∇Cm(x̃) ·nx ][∇Rm(s̃) ·ns]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mi =√−1
∞∑

m=0
εm(−1)m

×
{

�Fm(k|s̃− p̃|)
�ns

[
�Im(k|x̃− p̃|)

�nx
cos(m
)+ Im(k|x̃− p̃|)�cos(m
)

�nx

]

+Fm(k|s̃− p̃|)
[

�Im(k|x̃− p̃|)
�nx

�cos(m
)

�ns
+ Im(k|x̃− p̃|)�

2 cos(m
)

�nx�ns

]}

|s̃− p̃|>|x̃− p̃|

Me=√−1
∞∑

m=0
εm(−1)m

×
{

�Im(k|s̃− p̃|)
�ns

[
�Fm(k|x̃− p̃|)

�nx
cos(m
)+Fm(k|x̃− p̃|)�cos(m
)

�nx

]

+ Im(k|s̃− p̃|)
[

�Fm(k|x̃− p̃|)
�nx

�cos(m
)

�ns
+Fm(k|x̃− p̃|)�

2 cos(m
)

�nx�ns

]}

|x̃− p̃|>|s̃− p̃|

(45)

where

�2 cos(m
)

�nx�ns
= �[−m sin(m
)aini ]

�nx

= aini
�[−m sin(m
)]

�nx
+(−m sin(m
))

�aini
�nx

= aini [−m2 cos(m
)bi n̄i ]

+[−m sin(m
)]
{
n1

[−(s2− p2)

|s̃− p̃|3
(

n̄1
x2− p2

− (x1− p1)n̄1
(x2− p2)2

)]

+n2

[
(s1− p1)(s2− p2)

|s̃− p̃|3
(

n̄1
x2− p2

− (x1− p1)n̄1
(x2− p2)2

)]}
(46)

2.4. Dual boundary element formulation in conjunction with the FMM

By employing the constant element scheme through coordinate transformation and moving the
center of the multipole, p̃, to the center of the local coordinate on each boundary element as shown
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in Figure 2(b), each element of the influence matrices can be obtained as follows:
(1) U kernel: For the regular integral (i 	= j), we have
(a) ri j>0.5l j

Ui j =
∫ 0.5l j

−0.5l j
Ue ds

= 4
√−1

∞∑
m=0

εmF2m(kri j )cos(2m
)

∫ 0.5l j

−0.5l j
I2m(k|s|)ds

=
∞∑

m=0
C1
i jm Rmj (47)

where ri j is the distance between the collocation point on the center of the i th element and the
source point on the center of the j th element, ri j =

√
x2r + y2r , xr and yr are the coordinates of

the collocation point after translation and rotation as shown in Figure 2(c) and l j is the length of
the j th source element. The multipole moment Rmj is the value related to the source point
coordinate and C1

i jm is the value related to the field point coordinate as shown below:

C1
i jm =4

√−1εmF2m(kri j )cos(2m
) (48)

Rmj = 1

k

∞∑
n=0

(−1)n I2m+2n+1(0.5l j ) (49)

(b) ri j<0.5l j

Ui j =
∫ −ri j

−0.5l j
U i ds+

∫ ri j

−ri j
Ue ds+

∫ 0.5l j

ri j
U i ds

= 4
√−1

∞∑
m=0

εmF2m(kri j )cos(2m
)

(
1

k

n=∞∑
n=0

(−1)n I2m+2n+1(kri j )

)

+4
√−1

∞∑
m=0

εm(−1)m I2m(kri j )cos(2m
)

∫ 0.5l j

ri j
F2m(k|s|)ds (50)

For the weakly singular integral (i= j), we regularize the integral by means of partial integration
and limiting process ((xr , yr )=(0,�)) as follows:

Uii = lim
�→0

∫ −�

−0.5l j
U i ds+

∫ �

−�
Ue ds+

∫ 0.5l j

�
Ui ds (i no sum)

= 2
√−1

∞∑
m=0

εm(−1)mF2m(k�)cos(m�)

{
1

k

n=∞∑
n=0

(−1)n I2m+2n+1(k�)
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+2
√−1

∞∑
m=0

εm I2m(k�)cos(m�)

(∫ 0.5l j

�
Fm(k|s|)ds

)}

= √−1

{
D(1)
0

(
kl

2

)
l−k

∫ 0.5l j

−0.5l j
{D(2)

1 (k|s|)|s|ds}
}

(51)
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Figure 3. The contour plot of potential for U kernel: (a) the real part of U kernel using degenerate form
of Equation (29); (b) the imaginary part of U kernel using degenerate form of Equation (29); (c) the real
part of U kernel using the closed-form solution of Equation (17); and (d) the imaginary part of U kernel

using the closed-form solution of Equation (17).
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where

lim
�→0

∫ �

−�
F (1)
0 (k|s|)ds= lim

�→0

∫ �

−�
−√−1ln(k|s|)ds=0 (52)

(2) T kernel: For the regular integral (i 	= j), we have
(a) ri j>0.5l

Ti j =
∫ 0.5l j

−0.5l j
T e ds

= √−1
∞∑

m=0
εm(−1)2mF2m(kri j )cos(2m
)

×
∫ 0.5l j

−0.5l j

k

2
[I2m−1(k|s|)+ I2m+1(k|s|)] s ·0+0 ·(−1)

|s| ds

+√−1
∞∑

m=0
2F2m+1(kri j )(2m+1)sin((2m+1)
)

∫ 0.5l j

−0.5l j

I2m+1(k|s|)
|s| ds

=C2
i jm[Rmj −R(m+1) j ] (53)

where

C2
i jm =4

√−1kF2m+1(kri j )sin((2m+1)
) (54)

(b) ri j<0.5l

Ti j =
∫ −ri j

−0.5l j
T i ds+

∫ ri j

−ri j
T e ds+

∫ 0.5l j

ri j
T i ds

= 4
√−1

∞∑
m=0

F2m+1(kri j )sin((2m+1)
)

×
∞∑
n=0

(−1)n[I2m+2n+1(kri j )− I2m+2n+3(kri j )]

+4
√−1

∞∑
m=0

I2m+1(kri j )(2m+1)sin((2m+1)
)
k

4m+2

×
∫ 0.5l j

ri j
[F2m(k|s|)−F2m+2(k|s|)]ds (55)

For the strongly singular integral (i= j), we regularize the integral by means of partial integration,
limiting process and the identity from the generalized function [39] as shown below:

∞∑
m=1

sin(m�/2)

m
= �

4
(56)
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We can obtain the integral as follows:

Tii =
∫ −�

−0.5l j
T i ds+

∫ �

−�
T e ds+

∫ 0.5l j

�
T i ds (i no sum)

= 4
√−1

∞∑
m=0

F2m+1(k�)sin((2m+1)
)
∞∑
n=0

(−1)n[I2m+2n+1(k�)− I2m+2n+3(k�)]

+4
√−1

∞∑
m=0

I2m+1(kri j )(2m+1)sin((2m+1)
)
k

4m+2

∫ 0.5l j

�
[F2m(k|s|)−F2m+2(k|s|)]ds

= 2
∞∑

m=1

sin(m�/2)

m
+2

∞∑
m=1

sin(m�/2)

m

= � (57)

(3) L kernel: For the regular integral (i 	= j), we have
(a) ri j>0.5l

Li j =
∫ 0.5l j

−0.5l j
Le ds

= √−1
∞∑

m=0
εm(−1)2m

k

2
[F (1)

2m−1(kri j )+F2m+1(kri j )] xi n̄i
ri j

cos(2m
)

∫ 0.5l j

−0.5l j
I2m(k|s|)ds

−√−1
∞∑

m=0
εm(−1)2mF2m(kri j )(2m)sin(2m
)

yr n̄1−xr n̄2
r2i j

∫ 0.5l j

−0.5l j
I2m(k|s|)ds

=
∞∑

m=0
C3
i jm Rmj (58)

where

C3
i jm = √−1εm

{
k

2
[F2m−1(kri j )−F2m+1(kri j )] xi n̄i

ri j
cos(2m
)

−F2m(kri j )(2m)sin(2m
)
yr n̄1−xr n̄2

r2i j

}
(59)

(b) ri j<0.5l

Li j =
∫ −ri j

−0.5l j
Li ds+

∫ ri j

−ri j
Le ds+

∫ 0.5l j

ri j
Li ds

= √−1
∞∑

m=0
εm(−1)2m

k

2
[F2m−1(kri j )+F2m+1(kri j )] xi n̄i

ri j
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×cos(2m
)
4

k

[ ∞∑
n=0

(−1)n I2m+2n+1(kri j )

]

+√−1
∞∑

m=0
εmF2m(kri j )(2m)sin(2m
)

yr n̄1−xr n̄2
r2i j

4

k

[ ∞∑
n=0

(−1)n I2m+2n+1(kri j )

]

+2
√−1

∞∑
m=0

εm
k

2
[I2m−1(kri j )+ I2m+1(kri j )] xi n̄i

ri j
cos(2m
)

∫ 0.5l j

ri j
F2m(ks)ds

+2
√−1

∞∑
m=0

εm I2m(kri j )(2m)sin(2m
)
yr n̄1−xr n̄2

r2i j

∫ 0.5l j

ri j
F2m(k|s|)ds (60)

For the strongly singular integral (i= j), we regularize the integral by means of partial integration
and limiting process and the identity in Equation (56) as follows:

Lii =
∫ −�

−0.5l j
Li ds+

∫ �

−�
Le ds+

∫ 0.5l j

�
Li ds (i no sum)

= √−1
∞∑

m=0
εm(−1)2m

k

2
[F2m−1(k�)+F2m+1(k�)] xi n̄i

ri j
cos(2m
)

4

k

[ ∞∑
n=0

(−1)n I2m+2n+1(k�)

]

+2
√−1

∞∑
m=0

εm
k

2
[I2m−1(k�)+ I2m+1(k�)](−1)m

∫ 0.5l j

�
F2m(k|s|)ds

= −2

[ ∞∑
m=1

sin(m�/2)

m
−1

]
−2−2

[ ∞∑
m=1

sin(m�/2)

m

]

= −� (61)

(4) M kernel: For the regular integral (i 	= j), we have
(a) ri j>0.5l

Mi j =
∫ 0.5l j

−0.5l j
Me ds

= √−1
∞∑

m=0
(2)

k

2
[F2m(kri j )+F2m+2(kri j )] xi n̄i

ri j
[(2m+1)sin((2m+1)
)]

×
∫ 0.5l j

−0.5l j

I2m+1(k|s|)
|s| ds−√−1

∞∑
m=0

(2)F2m+1(kri j )(2m+1)2 cos((2m+1)
)

× yr n̄1−xr n̄2
r2i j

∫ 0.5l j

−0.5l j

I2m+1(k|s|)
|s| ds

=
∞∑

m=0
C4
i jm[Rmj +R(m+1) j ] (62)
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where

C4
i jm = √−1k

xi n̄i
ri j

(2m+1)

{
k[F2m(kri j )+F2m+2(kri j )]sin((2m+1)
)

+F2m+1(kri j )(2m+1)cos((2m+1)
)
yr n̄1−xr n̄2

kri j

}
(63)

(b) ri j<0.5l

Mi j =
∫ −ri j

−0.5l j
Mi ds+

∫ ri j

−ri j
Me ds+

∫ 0.5l j

ri j
Mi ds

= √−1
∞∑

m=0
(2)

k

2
[F2m(kri j )+F2m+2(kri j )] xi n̄i

ri j
[(2m+1)sin((2m+1)
)]

× 2

2m+1

∞∑
n=0

(−1)n
[
I2m+2n+1

(
kl

2

)
+ I2m+2n+3

(
kl

2

)]

−√−1
∞∑

m=0
(2)F2m+1(kri j )(2m+1)2 cos((2m+1)
)

× yr n̄1−xr n̄2
r2i j

2

2m+1

∞∑
n=0

(−1)n[I2m+2n+1(kri j )+ I2m+2n+3(kri j )]

+ 2
√−1

r2i j

∞∑
m=0

(2m+1)

{
k

2
(ri j )[I2m(kri j )+ I2m+2(kri j )]xi n̄i sin((2m+1)
)

+ I2m+1(kri j )(2m+1)cos((2m+1)
)yr n̄1−xr n̄2

}
k

4m+2

×
∫ 0.5l j

ri j
[F2m(k|s|)+F2m+2(k|s|)]ds (64)

For the hypersingular integral (i= j), we regularize the integral by means of partial integration,
limiting process and using the identity from the generalized function [39] as shown below:

∞∑
m=0

(−1)m = 1

2
(65)

We can obtain the integral as follows:

Mii =
∫ −�

−0.5l j
Mi ds+

∫ �

−�
Me ds+

∫ 0.5l j

�
Mi ds (i no sum)

= −2
√−1k

{∫ 0.5l j

�

F1(k|s|)
|s| ds+

∞∑
m=1

I2m(k�)(2m+1)(−1)m
∫ 0.5l j

�

F2m+1(k|s|)
|s| ds

}

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:711–751
DOI: 10.1002/fld



730 K. H. CHEN ET AL.

+
∞∑

m=1

2(2m+1)(−1)m

�2m+2

∫ �

0
s2m ds

= 2
√−1kD(2)

1

(
kl

2

)
−k2Uii (66)

It is interesting to find that Rmj term is repeatedly embedded in the formulae of the four influence
matrices of Equations (47), (53), (58) and (62).

2.5. Construction of the four influence matrices

By using the derivations of Section 2.4 and adopting M+1 terms in the series sum, the four
influence matrices in Equations (25) and (26) can be rewritten as

[U ] =

⎡
⎢⎢⎢⎢⎣

0 0 · · · 0

C1
210 C1

211 · · · C1
21M

...
...

. . .
...

C1
N10 C1

N11 · · · C1
N1M

⎤
⎥⎥⎥⎥⎦

N×(M+1)

⎡
⎢⎢⎢⎢⎣

R01 0 · · · 0

R11 0 · · · 0
...

...
. . .

...

RM1 0 · · · 0

⎤
⎥⎥⎥⎥⎦

(M+1)×N

+

⎡
⎢⎢⎢⎢⎣
C1
120 C1

121 · · · C1
12M

0 0 · · · 0
...

...
. . .

...

C1
N20 C1

N21 · · · C1
N2M

⎤
⎥⎥⎥⎥⎦

N×(M+1)

⎡
⎢⎢⎢⎢⎣
0 R02 · · · 0

0 R12 · · · 0
...

...
. . .

...

0 RM2 · · · 0

⎤
⎥⎥⎥⎥⎦

(M+1)×N

+·· ·+

⎡
⎢⎢⎢⎢⎢⎣

C1
1N0 C1

1N1 · · · C1
1NM

C1
2N0 C1

2N1 · · · C1
2NM

...
...

. . .
...

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

N×(M+1)

⎡
⎢⎢⎢⎢⎣
0 0 · · · R0N

0 0 · · · R1N

...
...

. . .
...

0 0 · · · RMN

⎤
⎥⎥⎥⎥⎦

(M+1)×N

+[diag(Uii )]N×N (67)

[T ] =

⎡
⎢⎢⎢⎢⎣

0 0 · · · 0

C2
210 C2

211 · · · C2
21M

...
...

. . .
...

C2
N10 C2

N11 · · · C2
N1M

⎤
⎥⎥⎥⎥⎦

N×(M+1)

⎡
⎢⎢⎢⎢⎣

(R01+R11) 0 · · · 0

(R11+R21) 0 · · · 0
...

...
. . .

...

(RM1+R(M+1)1) 0 · · · 0

⎤
⎥⎥⎥⎥⎦

(M+1)×N

+

⎡
⎢⎢⎢⎢⎣
C2
120 C2

121 · · · C2
12M

0 0 · · · 0
...

...
. . .

...

C2
N20 C2

N21 · · · C2
N2M

⎤
⎥⎥⎥⎥⎦

N×(M+1)

⎡
⎢⎢⎢⎢⎣
0 (R02+R12) · · · 0

0 (R12+R22) · · · 0
...

...
. . .

...

0 (RM2+R(M+1)2) · · · 0

⎤
⎥⎥⎥⎥⎦

(M+1)×N
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+·· ·+

⎡
⎢⎢⎢⎢⎢⎢⎣

C2
1N0 C2

1N1 · · · C2
1NM

C2
2N0 C2

2N1 · · · C2
2NM

...
...

. . .
...

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

N×(M+1)

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · (R0N +R1N )

0 0 · · · (R1N +R2N )

...
...

. . .
...

0 0 · · · (RMN +R(M+1)N )

⎤
⎥⎥⎥⎥⎥⎦

(M+1)×N

−�IN×N (68)

[L] =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0

C3
210 C3

211 · · · C3
21M

...
...

. . .
...

C3
N10 C3

N11 · · · C3
N1M

⎤
⎥⎥⎥⎥⎥⎦

N×(M+1)

⎡
⎢⎢⎢⎢⎣

R01 0 · · · 0

R11 0 · · · 0

...
...

. . .
...

RM1 0 · · · 0

⎤
⎥⎥⎥⎥⎦

(M+1)×N

+

⎡
⎢⎢⎢⎢⎢⎣

C3
120 C3

121 · · · C3
12M

0 0 · · · 0

...
...

. . .
...

C3
N20 C3

N21 · · · C3
N2M

⎤
⎥⎥⎥⎥⎥⎦

N×(M+1)

⎡
⎢⎢⎢⎢⎣
0 R02 · · · 0

0 R12 · · · 0

...
...

. . .
...

0 RM2 · · · 0

⎤
⎥⎥⎥⎥⎦

(M+1)×N

+·· ·+

⎡
⎢⎢⎢⎢⎢⎢⎣

C3
1N0 C3

1N1 · · · C3
1NM

C3
2N0 C3

2N1 · · · C3
2NM

...
...

. . .
...

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

N×(M+1)

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · R0N

0 0 · · · R1N

...
...

. . .
...

0 0 · · · RMN

⎤
⎥⎥⎥⎥⎥⎦

(M+1)×N

+�IN×N (69)

[M] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

C4
210 C4

211 · · · C4
21M

...
...

. . .
...

C4
N10 C4

N11 · · · C4
N1M

⎤
⎥⎥⎥⎥⎥⎥⎦

N×(M+1)

⎡
⎢⎢⎢⎢⎢⎣

(R01+R11) 0 · · · 0

(R11+R21) 0 · · · 0

...
...

. . .
...

(RM1+R(M+1)1) 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

(M+1)×N

+

⎡
⎢⎢⎢⎢⎢⎢⎣

C4
120 C4

121 · · · C4
12M

0 0 · · · 0

...
...

. . .
...

C4
N20 C4

N21 · · · C4
N2M

⎤
⎥⎥⎥⎥⎥⎥⎦

N×(M+1)

⎡
⎢⎢⎢⎢⎢⎣

0 (R02+R12) · · · 0

0 (R12+R22) · · · 0

...
...

. . .
...

0 (RM2+R(M+1)2) · · · 0

⎤
⎥⎥⎥⎥⎥⎦

(M+1)×N
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+·· ·+

⎡
⎢⎢⎢⎢⎢⎢⎣

C4
1N0 C4

1N1 · · · C4
1NM

C2
2N0 C2

2N1 · · · C2
2NM

...
...

. . .
...

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

N×(M+1)

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · (R0N +R1N )

0 0 · · · (R1N +R2N )

...
...

. . .
...

0 0 · · · (RMN +R(M+1)N )

⎤
⎥⎥⎥⎥⎥⎦

(M+1)×N

+[diag(Mii )]N×N (70)

It is interesting that the four influence matrices in the dual BEM are all composed of the field
point matrices and the source point matrices. The separable technique can promote the efficiency
in determining the influence coefficients. The source point matrices of [U ] are all the same
with [L], whereas the source point matrices of [T ] are all the same with [M]. Besides, many
influence coefficients in the source point matrices of [T ] and [M] have the same data with [U ]
and [L], or with only some combinations. There are many zeros or the same influence coefficients
in the field point matrices decomposed in the four influence matrices. Therefore, we can avoid
calculating repeatedly the same term. The separable technique reduces the number of floating-
point operations from O((N )2) to O(N loga(N )). Large computation time savings are achieved
and memory requirements are reduced, thus enabling us to apply BEM to solve the problem
efficiently.

3. ILLUSTRATIVE EXAMPLES

To demonstrate the validity of the dual integral formulation in conjunction with the FMM, three
examples are given as follows:

Example 1 (A finite-thickness barrier for the normal incident wave (�=0◦))
We solve the scattering wave problem for the normal incident wave by applying the developed
program and compare with the analytical solution [40] and the conventional dual BEM. In this
case, the width to length ratio (b/h) is 1, the nondimensional wave number (kh) is 2, and the
submergence ratio (d/h) is 0.75. The reflection and transmission coefficients (R,T ) are shown
in Table II. The results compare well with the eigenfunction expansion method by Abul-Azm
[40]. The free water surface profiles with the different boundary meshes of 50,100,200 and 400
elements are plotted in Figures 4(a) and (b) by using the UT and LM methods, respectively. The
relative error of the transmission coefficient, ε, in comparison with the eigenfunction expansion
method against the number of boundary elements is plotted in Figures 5(a) and (b) by using the
UT and LM methods, respectively. The result using the uniform mesh refinement of 400 elements
converges to the analytical solution. By adopting the six-moment FMM formulation, the results are
compared well with those of conventional BEM and analytical solutions. The free water surface
profiles for the FMM results with different number of terms in the series using the UT and LM
methods are shown in Figures 6(a) and (b), respectively. Comparison of the relative error, ε, for
the FMM results with the number of series terms is shown in Figure 7(a) and in Figure 7(b) by
using the UT and LM methods, respectively. Only a few number of terms in the FMM can reach
within the error tolerance. Comparison of CPU time using the FMM with different number of
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Case 1. (b=h, kh=2,θ=0 )
Conventional BEM (50 elements)

Conventional BEM (100 elements)

Conventional BEM (200 elements)

Conventional BEM (400 elements)

FMM (50 elements, M=6)

FMM (100 elements, M=6)

FMM (200 elements, M=6)

FMM (400 elements, M=6)

(a)

(b)

Figure 4. Wave amplitude on free water surface (a) using the UT method and (b) the LM method with
different number of boundary elements for case 1.

terms is plotted in Figure 8. Figure 9 shows the CPU time versus number of elements. The trend
of CPU time in proportion to N 2 and N log2.5 N is found for the conventional BEM and the FMM,
respectively.
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Figure 5. The relative error, ε, against the number of boundary elements (a) using the UT method and
(b) the LM method for case 1.

Example 2 (A finite-thickness barrier for oblique incident wave (�=75◦))
In this case, b/h=0.5, kh=4, and d/h=0.75 are adopted. The results are compared well with the
eigenfunction expansion method by Abul-Azm [40] as shown in Table II. The free water surface
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Figure 6. Wave amplitude on free water surface (a) using the UT method and (b) the LM method with
different number of terms in the series for case 1.
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Figure 7. The relative error, ε, against different number of terms in the series (a) using the UT method
and (b) the LM method for case 1.

profiles with the different boundary meshes of 50,100,200 and 400 elements are plotted in Figures
10(a) and (b) by using the UT and LM methods, respectively. The relative error, ε, against the
number of boundary elements is plotted in Figures 11(a) and (b) by using the UT and LM methods,
respectively. The numerical result using the uniform mesh refinement of 400 elements converges
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Figure 8. CPU time versus M by using the FMM for case 1.
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Figure 9. CPU time versus the number of elements by using the FMM (M=6) and
the conventional DBEM for case 1.
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Figure 10. Wave amplitude on free water surface (a) using the UT method and (b) the LM method with
different number of boundary elements for case 2.
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Figure 11. The relative error, ε, against the number of boundary elements (a) using the UT method and
(b) the LM method for case 2.

to the analytical solution. By adopting the six-moment FMM formulation, the results are compared
well with those of conventional BEM and analytical solutions. The free water surface profiles for
the FMM results with different number of terms in the series are shown in Figures 12(a) and (b)
by using the UT and LM methods, respectively. Comparison of the relative error, ε, for the FMM
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Figure 12. Wave amplitude on free water surface (a) using the UT method and (b) the LM method with
different number of terms in the series for case 2.
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Figure 13. The relative error, ε, against different number of terms in the series using (a) the UT method
and (b) the LM method for case 2.

results with different number of terms in the series is shown in Figures 13(a) and (b) by using
the UT and LM methods, respectively. Only a few number of terms in the FMM can reach within
the error tolerance. Comparison of CPU time using the FMM with different number of terms is
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Figure 14. CPU time versus M by using the FMM for case 2.
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Figure 15. CPU time versus the number of elements by using the FMM (M=6) and
the conventional DBEM for case 2.
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Figure 16. Wave amplitude on free water surface (a) using the UT method (combined LM) and (b) the
LM method (combined UT) with different number of boundary elements for case 3.

plotted in Figure 14. Figure 15 shows the CPU time versus number of elements. The trend of
CPU time in proportion to N 2 and N log2.5 N is found for the conventional BEM and the FMM,
respectively.
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Figure 17. The relative error, ε, against the number of boundary elements (a) using the UT method
(combined LM) and (b) the LM method (combined UT) for case 3.

Example 3 (A zero-thickness barrier for oblique incident wave (�=20◦))
In this case, b=0, kh=2.136 and d/h=0.7 are adopted. The results are compared well with
the eigenfunction expansion method by Losada et al. [15] as shown in Table II. The free water
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Figure 18. Wave amplitude on free water surface (a) using the UT method (combined LM) and (b) the
LM method (combined UT) with different number of terms in the series for case 3.
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Figure 19. The relative error, ε, against different number of terms in the series (a) using the UT method
(combined LM) and (b) the LM method (combined UT) for case 3.

surface profiles with the different boundary meshes of 40,80,160 and 240 elements are plotted
in Figure 16(a) using the UT method (combined LM) and in Figure 16(b) using the LM method
(combined UT). The relative error, ε, against the number of boundary elements is plotted in
Figure 17(a) using the UT method (combined LM) and in Figure 17(b) using the LM method
(combinedUT). The numerical result using the uniform mesh refinement of 240 elements converges
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Figure 21. CPU time versus the number of elements by using the FMM (M=3) and
the conventional DBEM for case 3.
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to the exact solution. By adopting the three-moment FMM formulation, the results are compared
well with those of conventional BEM and analytical solutions. The free water surface profiles
for the FMM results with different terms in the series using the UT method (combined LM)
are shown in Figure 18(a) and in Figure 18(b) using the LM method (combined UT). Compar-
ison of the relative error, ε, for the FMM results using the UT method (combined LM) with
different terms in the series is shown in Figure 19(a) and in Figure 19(b) using the LM method
(combined UT). Only a few number of terms in the FMM can reach within the error tolerance.
Comparison of CPU time using the FMM with different number of terms is plotted in Figure 20.
Figure 21 shows the CPU time versus different number of boundary elements. The trend of
CPU time in proportion to N 2 and N log2.5 N is found for the conventional BEM and the FMM,
respectively.

4. CONCLUSIONS

In this paper, the dual integral formulation has been derived for the modified Helmholtz equation
in the propagation of incident (oblique or normal) wave passing a barrier (finite or zero thickness)
by employing the concept of fast multipole method (FMM) to accelerate the construction of an
influence matrix. The four kernels in the dual formulation were expanded into degenerate kernels
where the field point and the source point were separated. The separable technique promoted the
efficiency in determining the influence coefficients. The singular and hypersingular integrals have
been transformed into the summability of divergent series and regular integrals. Three illustrative
examples have been successfully demonstrated by using the FMM for DBEM formulation. The
numerical results were compared well with those of conventional DBEM and analytical solutions.
Only a few number of terms in FMM can reach within the error tolerance. In addition, the CPU
time was reduced in comparison with the conventional BEM without employing the FMM concept.
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